A STUDY OF NATURAL CONVECTION IN HORIZONTAL
CYLINDRICAL GAPS

A. A. Berkengeim UDC 536,253

A study was made of natural convection in horizontal cylindrical gaps. For hot tubes of
small diameters, the convection factor has been related not only fo the Rayleigh number
but also to the geometrical dimensions (diameter of the hot tube and relative gap width).
The construction of experimental tubes is also described.

In earlier reports 1, 2] the a"gt__hqz: has presented the results of an experimental study concerning the
natural convection of heat from thin wires into the surrounding enclosed space. The author analyzed there
how the convection factor depends on the gap width 6, on the wire length, and on the spatial orientation of
the wire.

In this study the author analyzed the effect of the diameter of the hot cylinder on the rate of natural
convection during heat transmission through horizontal cylindrical-annular gaps, The heat was supplied
from an inner hot cylinder through a fluid (distilled water or 96% ethanol) to an outer cylinder. The con-
vection factor

g = heff (1
in this experiment was determined for tubes of equal lengths and with equal gap widths but different diam-
eters of the inner and the outer cylinders.

If the amount of transmitted heat and the temperature drop between both cylinders are known, then
the effective thermal conductivity

AQ
heffs ———,
D eff AT (2)
ln —B‘L
with A = inl can be determined by integrating the Fourier equation. The effective thermal con-

ductivity Aggr in tubes Nos. 1, 2, and 3 was measured by the "hot wire" method, A description of this meth-
od can be found in 1, 3). The dimensions of those tubes are given in Table 1,

Tube No. L was designed as conventionally for this method of measurement. It was made of molyb-
denum-grade glass with a platinum wire stretched along the axis and heated with direct electric current,
On the outside surface of the tube was wound another platinum wire serving as a resistance thermometer,
In tubes Nos, 2 and 3 the platinum wire along the axis was replaced by a thin-wall nickel tubule also heated
with direct electric current, This nickel tubule was centered inside each glass tube by means of two
Teflon washers. These washers, with the tubule in between, also fixed the length of the test zone. Each
tube was then plugged on both ends. The temperature of the hot tube and that of the cold tube were deter-
mined from the resistance of the nickel tubule and that of the external platinum thermometer, The amount
of transmitted heat was determined from the current and the voltage drop across the test segment,

The experimental tube No. 4 was designed differently. The hot cylinder was made of stainless steel.
Inside it were placed three heater elements in the form of wire coils wound around glass tubes; the main
heater along the test segment and the two auxiliary ones at the cylinder ends. The temperature of the hot
cylinder was measured with six copper —constantan thermocouples fused into the cylinder wall. A brass
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TABLE 1. Dimensions of the Tubes

: D 8
Item No, | I, mm D;,mm | Dg mm 6, mm 5% s
t
1 130 0.1 13.3 6,6 133 66
2 130 I 12,85 5,92 12,85 592
3 130 3,35 16,51 6,58 4,95 1,96
4 130 141 27,67 6.785 1,96 0,48
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Fig. 1. Convection factor € as a function of the Rayleigh number Rag (plotted to
a semilog scale),

Fig. 2. Convection factor & = f(Dj)Ray = const as a function of the diameter of
the hot cylinder D; (mm); 1) test values from [4]; 2) test values from [5]; 3) test
values from this study; a) Rag = 3.2 .10% b) Rag =2-10% ¢) Rag = 1- 105,

tube served as the outer cylinder, Iis temperature was also measured with six copper —constantan thermo-
couples. The temperatures were measured by the compensation method. The entire assembly was placed
inside a fluid thermostat.

The test data were evaluated in terms of the criterial relation

e — [ (Ray). (3)
Here Rag = GrgPr, Grs =Bn’gaTo¥/n?; Pr =ncpg/A.

The thickness 6 of the fluid layer was selected as the reference dimension for calculating the Ray-
leigh number. The results are shown in Fig. 1. Curves 1, 2, 3, and 4 refer to tubes Nos, 1, 2, 3, and 4,
respectively, Curve 5 represents the values of £ based on the Crousehold —Mikheev equation

e = 0.105 (Ra,)™® . (4)

The graph indicates that, for coaxial cylinders of equal lengths 7, and of equal gap widths 6, the convection
factor depends not only on the Rayleigh number but also on the diameter of the hot inner cylinder Dj: it
decreases when this diameter becomes smaller., The Crousehold —Mikheev equation yields values of the
convection factor which are too high for small cylinders.

In order to determine the effect of Dj, should that diameter of the inner cylinder be varied over a
range as a wide as in this study, Grigul and Hauf [4] as well as Beckmann (5] had plotted curves of ¢
= f(Di) for constant values of Ras (Fig. 2). It is quite evident that the dependence of the convection factor
on the diameter of the hot cylinder becomes gradually weaker and eventually ceases as this diameter be-
comes larger. An explanation for such a trend is, apparently, that at small diameters D, the development
of a free flow around a hot horizontal cylinder depends largely on the size of the surface (27r;) along
which the heated liguid flows.

Let us now consider the convection factor as a function of the relative gap width. The curves of &
= f(0/Dj) in Fig. 3 have been plotted for constant values of Rag on the basis of the test data in this study
as well as in [4] and [5]. It is quite evident that the convection factor becomes maximum when 6/ D; =1,
It decreases, as the relative gap width is further increased up to 6/Dj = 6 and levels off to an almost con-
stant value when 6/Dj > 6. The trend of this relation should be of some significance for the solution of
engineering problems.

1273



ge 1 .
° ®
) ]
38 - — 'f‘?
o a °-—2
94
—3
2 \’ _ o ] .
b —— — .._:_.-_— :‘u . R iy x —2
\J c o ‘ J . —3
Y2 4 & & m . # % #* iy,
Fig. 3 . Fig. 4

Fig. 3. Convection factor as a function of the relative gap width, at constant
values of Rag: 1) according to this study; 2) according to the data in [4]; 3)
according to the data in [5]; a) Rag = 3.2-10% b) 2°10%; ¢) 1.10°,

Fig. 4. Convection factor e as a function of Ray, (plotted to a log—-log scale),
based on measurements made in: 1) tube No. 4 (D; = 14.1 mm); 2) tube No, 3
(Dj = 3.35 mm); 3) tube No. 2 (D; =1.0 mm).

Several empirical equations for calculating the convection factor have been proposed in [1, 4 , 5].
The test data of this study, except those pertaining to tube No. 1 (Dj = 0.1 mm), may be generalized by
the critical equation

e = 0.17 (Ra,)™%, (5)
applicable within the range 1600 < Ray, < 600,000.

Here, as has been suggested in [6], the characteristic length m = vr,rilnr, /r; is used for cal-
culating the Rayleigh number and, consequently,

2 . 3
Ra,, = EB—%A—T- []./r,,ri In %—] Pr.
72 i

The results of these calculations are shown in Fig. 4. The scatter of test values does not exceed 10% and
is random, related to the measurement error as well as to the error in the values of the thermophysical
properties used for calculating the Rayleigh number.

It is to be noted that the deviation of test points from curve 5 in Fig. 1, which has been calculated
according to the Crousehold -Mikheev equation, is systematic and dependent on the diameter D;. For
small diameters D; this deviation of test points from the universal curve is up to almost 50%.

NOTATION

I is the length of the test zone;

ri, D are the outside radius and diameter, respectively, of the hot inner cylinder;
r,, D, are the inside radius and diameter, respectively, of the outside cylinder;

o is the gap width;

xeff is the effective thermal conductivity;
is the instrument constant;
Q is the amount of transmitted heat;
AT is the temperature drop between hot and cold eylinder;
£ is the convection factor;
A is the molecular thermal conductivity;
Grs is the Grashof number referred to the gap width;
Pr is the Prandtl number;
B is the thermal volume expansivity;
17 is the density;
g is the acceleration due to gravity;
n is the dynamic viscosity;
Cp is the specific heat at constant pressure;
Ragj is the Rayleigh number referred to the gap width;
m is the characteristic dimension;
Ram is the Rayleigh number referred fo the characteristic dimension,
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